Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 3-[(E)-(2-hydroxy-1-naphthyl)methylidene]carbazate

Liang-Quan Sheng,* Hua-Jie Xu, Na-Na Du and Xue-Yue liang

Department of Chemistry, Fuyang Normal College, Fuyang, Anhui 236041, People's Republic of China

Correspondence e-mail: shenglg@fync.edu.cn

Received 17 October 2010; accepted 28 October 2010

Key indicators: single-crystal X-ray study: T = 291 K: mean σ (C–C) = 0.002 Å: R factor = 0.030; wR factor = 0.058; data-to-parameter ratio = 9.5.

The title compound, $C_{13}H_{12}N_2O_3$, has an *E* configuration with respect to the C-N bond: the conformation is stabilized by an intramolecular $O-H \cdots N$ hydrogen bond. In the crystal, an N-H···O interaction links the molecules into a C(4) chain along [100].

Related literature

For the naphthalene group as a fluorophore, see: Li et al. (2010); Iijima et al. (2010). For a related structure and bond length, see: Xu et al. (2009). For the synthetic method, see: Zhang et al. (1999). For graph-set notation, see: Bernstein et al. (1995). For applications of Schiff base-metal complexes, see: Cozzi (2004).

Experimental

Crystal data C13H12N2O3 $M_r = 244.25$ Orthorhombic, P212121 a = 5.1754 (3) Å b = 9.2787 (5) Å

c = 23.6766 (12) Å

 $V = 1136.97 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 291 K $0.40 \times 0.36 \times 0.30 \ \text{mm}$

Data collection

Oxford Diffraction Gemini S Ultra	6329 measured reflections
diffractometer	1562 independent reflections
Absorption correction: multi-scan	1120 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.031$
Diffraction, 2009)	
$T_{\min} = 0.960, \ T_{\max} = 0.970$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	165 parameters
$vR(F^2) = 0.058$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
562 reflections	$\Delta \rho_{\min} = -0.13 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
O1-H1···N1	0.82	1.91	2.6332 (18)	146
$N2 - H2 \cdots O2^{n}$	0.86	2.11	2.9626 (18)	170

Symmetry code: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Key Project of Science and Technology of Anhui (grant No. 08010302218), the Natural Science Foundation of Anhui Provincial University (grant No. KJ2009A127) and the National Natural Science Foundation of China (grant No. 20971024).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2318).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Iijima, T., Momotake, A., Shinohare, Y., Sato, T., Nishimura, Y. & Arai, T. (2010). J. Phys. Chem. A, 114, 1603-1609.
- Li, L., Dang, Y.-Q. H.-W., Wang, B. & Wu, Y.-Q. (2010). Tetrahedron Lett. 51, 618-621
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, H.-J., Du, N.-N., Jiang, X.-Y., Sheng, L.-Q. & Tian, Y.-P. (2009). Acta Cryst. E65. 01047.
- Zhang, W.-X., Li, J., Si, S.-F. J.-J., Ma, C.-Q. & Jiang, D.-H. (1999). Chin. J. Inorg. Chem. 15, 571-576.

supplementary materials

Acta Cryst. (2010). E66, o3046 [doi:10.1107/S1600536810044041]

Methyl 3-[(E)-(2-hydroxy-1-naphthyl)methylidene]carbazate

L.-Q. Sheng, H.-J. Xu, N.-N. Du and X.-Y. Jiang

Comment

The naphthalene group as a fluorophore has been studied extensively due to its characteristic photophysical properties and the competitive stability in the environment (Li *et al.*, 2010; Iijima *et al.*, 2010). Schiff base metal complexes have been widely studied because they have industrial, antifungal, antibacterial, anticancer and herbicidal applications (Cozzi, 2004). As part of an ongoing study of Schiff bases incorporating the naphthalene group (Xu *et al.*, 2009), we report here on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1 and geometrical parameters are given in the archived CIF. The title molecule, adopts an *E* or *trans* configuration with respect to the C=N bond while the lengths and angles are within normal ranges. The C=N bond length is 1.288 (2) Å, a little longer than schiff base C=N bond length (1.280 (15) Å) (Xu *et al.*, 2009).The crystal structure of (I) is stabilized by one intramolecular O—H···N interaction with H···N distances 1.91Å and O—H···N angles is 146.1° and one intermolecular N—H···O interaction with H···O distances 2.11Å and N—H···O angles is 169.8°, Table 1. The molecules are linked in C(4) chains along [100], (Bernstein *et al.*, 1995), Fig. 2.

Experimental

All reagents and solvents were used as obtained commercially without further purification. The title compound was prepared according to the reported procedure (Zhang *et al.*, 1999). A solution of methyl carbazate (0.09 g, 1 mmol) in 5 ml of ethanol was added slowly to a solution of 2-hydro-1-naphthaldehyde (0.172 g, 1 mmol) in 15 ml absolute ethanol, under heating and stirring. The mixture was refluxed for 3 h, then cooled to room temperature and left to stand in air for 5 days. Yellow block-shaped crystals were formed on slow evaporation of the solvent.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H distances 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the CH, while $U_{iso}(H) = 1.5U_{eq}(C)$ for the CH₃ groups. The amide H atoms were located from difference maps and refined with the N—H distances restrained to 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$. The hydroxyl H atoms were located from difference maps and refined with the O—H distances restrained to 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2. The one-dimensional structure of the title compound formed by intermolecular hydrogen bonds viewed along the c axis. The intra- and intermolecular hydrogen bonds are shown as pink dashed lines.

Methyl 3-[(E)-2-hydroxy-1-naphthyl)methylidene]carbazate

Crystal data

$C_{13}H_{12}N_2O_3$	F(000) = 512
$M_r = 244.25$	$D_{\rm x} = 1.427 \ {\rm Mg \ m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2986 reflections
a = 5.1754 (3) Å	$\theta = 3.4 - 29.1^{\circ}$
b = 9.2787 (5) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 23.6766 (12) Å	T = 291 K
$V = 1136.97 (11) \text{ Å}^3$	Block, yellow
Z = 4	$0.40 \times 0.36 \times 0.30 \text{ mm}$

Data collection

Oxford Diffraction Gemini S Ultra diffractometer	1562 independent reflections
Radiation source: Enhance (Mo) X-ray Source	1120 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
Detector resolution: 15.9149 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 3.4^\circ$
ω scans	$h = -6 \rightarrow 6$
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)	$k = -12 \rightarrow 12$
$T_{\min} = 0.960, \ T_{\max} = 0.970$	$l = -30 \rightarrow 29$
6329 measured reflections	

Refinement

Refinement on F^2	Primary atom s methods
Least-squares matrix: full	Secondary aton
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site l sites
$wR(F^2) = 0.058$	H-atom parame
<i>S</i> = 1.09	$w = 1/[\sigma^2(F_0^2)]^2$ where $P = (F_0^2)^2$
1562 reflections	$(\Delta/\sigma)_{\rm max} < 0.00$
165 parameters	$\Delta \rho_{max} = 0.13 \text{ e}$
0 restraints	$\Delta \rho_{\min} = -0.13$ c

Primary atom site location: structure-invariant direct nethods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring ites H-atom parameters constrained $v = 1/[\sigma^2(F_o^2) + (0.0239P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.13 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e } \text{Å}^{-3}$

Special details

Experimental. Absorption correction: CrysAlisPro,(Oxford Diffraction 2009). Version 1.171.33.66 (release 28-04-2010 CrysAlis171 .NET) (compiled Apr 28 2010,14:27:37) Empirical absorption correction using spherical harmonics, implemented in SCALE3 AB-SPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7358 (4)	0.2360 (2)	0.64442 (8)	0.0492 (5)
H1A	0.8342	0.2851	0.6711	0.059*
C2	0.7869 (4)	0.2539 (2)	0.58880 (8)	0.0538 (5)
H2A	0.9175	0.3163	0.5774	0.065*
C3	0.6428 (4)	0.1785 (2)	0.54858 (8)	0.0529 (5)
H3	0.6800	0.1901	0.5104	0.064*
C4	0.4483 (4)	0.0881 (2)	0.56460 (7)	0.0460 (5)
H4	0.3539	0.0397	0.5371	0.055*
C5	0.3871 (3)	0.06633 (18)	0.62220 (7)	0.0363 (4)
C6	0.5348 (3)	0.14347 (18)	0.66256 (7)	0.0402 (4)
C7	0.4774 (4)	0.1259 (2)	0.72052 (7)	0.0478 (5)
H7	0.5710	0.1780	0.7471	0.057*
C8	0.2899 (4)	0.0355 (2)	0.73821 (7)	0.0476 (5)
H8	0.2564	0.0256	0.7766	0.057*
С9	0.1459 (3)	-0.04352 (19)	0.69896 (7)	0.0406 (4)
C10	0.1867 (3)	-0.02866 (18)	0.64118 (7)	0.0354 (4)
C11	0.0239 (3)	-0.10114 (18)	0.60072 (6)	0.0396 (4)
H11	0.0471	-0.0813	0.5626	0.047*
C12	-0.4938 (4)	-0.33819 (19)	0.57803 (6)	0.0397 (4)
C13	-0.7307 (4)	-0.4828 (2)	0.64025 (8)	0.0554 (5)
H13A	-0.8917	-0.4395	0.6294	0.083*
H13B	-0.7372	-0.5087	0.6795	0.083*
H13C	-0.7014	-0.5677	0.6179	0.083*
N1	-0.1522 (3)	-0.19204 (16)	0.61512 (6)	0.0410 (4)
N2	-0.2962 (3)	-0.24594 (17)	0.57083 (5)	0.0455 (4)
H2	-0.2578	-0.2193	0.5371	0.055*
01	-0.0360 (3)	-0.13205 (14)	0.72081 (5)	0.0553 (4)
H1	-0.1165	-0.1705	0.6951	0.083*
O2	-0.6293 (2)	-0.37715 (15)	0.53872 (5)	0.0548 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

03	-0.5234 (2)	-0.38178	(12) 0.	63113 (4)	0.0462 (3)	
Atomic displace	ement parameters	(\AA^2)				
1	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0448 (11)	0.0476 (11)	0.0551 (11)	-0.0007 (-0.0054 (9)	-0.0056 (10)
C2	0.0448 (11)	0.0570 (12)	0.0597 (12)	-0.0065 ((12) 0.0032 (11)	0.0074 (11)
C3	0.0487 (12)	0.0657 (14)	0.0443 (10)	-0.0078 (-0.0017 (10)	0.0070 (10)
C4	0.0413 (11)	0.0562 (12)	0.0404 (9)	-0.0019 ((11) -0.0027 (9)	0.0043 (9)
C5	0.0347 (9)	0.0353 (9)	0.0388 (9)	0.0067 (9	-0.0037(8)	0.0020 (8)
C6	0.0385 (10)	0.0368 (10)	0.0453 (9)	0.0044 (1	1) -0.0051 (9)	0.0009 (9)
C7	0.0546 (11)	0.0499 (11)	0.0390 (9)	-0.0025 ((13) -0.0065 (10)	-0.0068 (9)
C8	0.0570 (12)	0.0542 (12)	0.0315 (9)	0.0008 (1	2) -0.0029 (9)	-0.0013 (9)
С9	0.0406 (10)	0.0410 (10)	0.0404 (10)	0.0028 (1	0) -0.0001 (9)	0.0058 (9)
C10	0.0359 (10)	0.0358 (9)	0.0346 (9)	0.0044 (1	0) -0.0040 (8)	0.0002 (8)
C11	0.0401 (10)	0.0427 (10)	0.0359 (9)	0.0007 (1	2) 0.0000 (8)	0.0025 (8)
C12	0.0427 (10)	0.0428 (10)	0.0336 (9)	0.0023 (1	1) -0.0029 (9)	-0.0007 (8)
C13	0.0492 (12)	0.0622 (12)	0.0547 (11)	-0.0121 ((13) -0.0041 (10)	0.0117 (10)
N1	0.0422 (9)	0.0446 (9)	0.0362 (7)	-0.0021 ((9) -0.0076 (7)	-0.0017 (7)
N2	0.0503 (9)	0.0556 (9)	0.0305 (7)	-0.0110 (10) -0.0022 (7)	0.0015 (7)
01	0.0580 (8)	0.0671 (9)	0.0406 (6)	-0.0135 ((9) 0.0007 (7)	0.0059 (7)
O2	0.0601 (8)	0.0684 (9)	0.0360 (6)	-0.0118 (9) -0.0126 (6)	0.0004 (7)
O3	0.0506 (7)	0.0528 (7)	0.0352 (6)	-0.0126 ((8) -0.0053 (6)	0.0075 (6)
Geometric para	ameters (Å, °)					
C1_C2		1 353 (2)	C	9-01	1	3523 (19)
C1 - C6		1.555(2) 1 416(2)	C	$P_{}C_{}^{}C_{}^{}D_{}^{}C_{}^{}D_{}^{}C_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{}^{}D_{$	1.	391 (2)
C1—H1A		0.9300	C	10—C11	1.	442 (2)
$C^2 - C^3$		1 397 (3)	C C	10 CH 11—N1	1.	288 (2)
C2—H2A		0.9300	C	11—H11	0	9300
$C_3 - C_4$		1 364 (2)	C	12-02	0. 1	2203 (19)
С3—Н3		0.9300	C	12 - 03	1.	3294 (19)
C4—C5		1 414 (2)	C	12—N2	1	344 (2)
C4—H4		0.9300	C	13-03	1.	441 (2)
C5—C6		1.418 (2)	C	13—H13A	0.	9600
C5-C10		1.433 (2)	C	13—H13B	0.	9600
C6—C7		1.413 (2)	C	13—H13C	0.	9600
С7—С8		1.350 (2)	Ν	1—N2	1.	3804 (18)
С7—Н7		0.9300	N	2—Н2	0.	8600
C8—C9		1.399 (2)	0	1—H1	0.	8200
С8—Н8		0.9300				
C2—C1—C6		120.88 (18)	0	1—C9—C10	12	22.83 (16)
C2—C1—H1A		119.6	0	1—С9—С8	11	5.79 (15)
C6—C1—H1A		119.6	С	10—C9—C8	12	21.38 (17)
C1—C2—C3		119.82 (19)	C	9—C10—C5	11	8.63 (16)
C1—C2—H2A		120.1	C	9—C10—C11	12	21.23 (16)
С3—С2—Н2А		120.1	C	5—C10—C11	12	20.08 (14)

C4—C3—C2	120.82 (17)	N1-C11-C10	122.89 (14)
С4—С3—Н3	119.6	N1—C11—H11	118.6
С2—С3—Н3	119.6	C10-C11-H11	118.6
C3—C4—C5	121.39 (17)	O2—C12—O3	124.41 (18)
C3—C4—H4	119.3	O2-C12-N2	121.93 (15)
С5—С4—Н4	119.3	O3—C12—N2	113.66 (15)
C4—C5—C6	117.21 (16)	O3—C13—H13A	109.5
C4—C5—C10	123.50 (16)	O3—C13—H13B	109.5
C6—C5—C10	119.29 (15)	H13A—C13—H13B	109.5
C7—C6—C1	121.25 (17)	O3—C13—H13C	109.5
C7—C6—C5	118.88 (17)	H13A—C13—H13C	109.5
C1—C6—C5	119.87 (15)	H13B—C13—H13C	109.5
C8—C7—C6	121.60 (17)	C11—N1—N2	114.73 (13)
С8—С7—Н7	119.2	C12—N2—N1	123.02 (13)
С6—С7—Н7	119.2	C12—N2—H2	118.5
С7—С8—С9	120.18 (16)	N1—N2—H2	118.5
С7—С8—Н8	119.9	С9—О1—Н1	109.5
С9—С8—Н8	119.9	C12—O3—C13	115.17 (14)
C6—C1—C2—C3	-1.1 (3)	C5-C10-C9-O1	-179.05 (14)
C1—C2—C3—C4	0.9 (3)	C5-C10-C9-C8	2.1 (2)
C5—C4—C3—C2	-0.6 (3)	C11—C10—C9—O1	4.0 (3)
C6—C5—C4—C3	0.6 (3)	C11—C10—C9—C8	-174.82 (16)
C10-C5-C4-C3	-179.27 (16)	C9—C10—C5—C4	178.98 (18)
C2—C1—C6—C7	-178.94 (18)	C9—C10—C5—C6	-0.9 (2)
C2—C1—C6—C5	1.1 (3)	C11-C10-C5-C4	-4.0 (2)
C4—C5—C6—C7	179.26 (17)	C11-C10-C5-C6	176.13 (15)
C10-C5-C6-C7	-0.9 (2)	C9—C10—C11—N1	-6.0 (2)
C4—C5—C6—C1	-0.8 (2)	C5-C10-C11-N1	177.12 (14)
C10-C5-C6-C1	179.04 (15)	N2-N1-C11-C10	177.35 (15)
C1—C6—C7—C8	-178.46 (16)	N1—N2—C12—O2	175.09 (16)
C5—C6—C7—C8	1.5 (3)	N1—N2—C12—O3	-5.3 (2)
C9—C8—C7—C6	-0.2 (3)	C12—N2—N1—C11	-177.71 (15)
С7—С8—С9—О1	179.49 (16)	C13—O3—C12—O2	0.6 (3)
C7—C8—C9—C10	-1.6 (3)	C13—O3—C12—N2	-178.95 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.82	1.91	2.6332 (18)	146
N2—H2···O2 ⁱ	0.86	2.11	2.9626 (18)	170
Symmetry codes: (i) $x+1/2, -y-1/2, -z+1$.				

Fig. 1

Fig. 2